A module over a field.
Axiom | Statement |
---|---|
Additive associativity | u + (v + w) = (u + v) + w |
Additive commutativity | u + v = v + u |
Additive identity | ∃0 ∈ V, ∀v ∈ V, v + 0 = v |
Additive inverse | ∀v ∈ V, ∃−v ∈ V, v + (−v) = 0 |
Multiplicative compatibility | a(bv) = (ab)v |
Multiplicative identity | 1v = v |
Distributivity of vector addition | a(u + v) = au + av |
Distributivity of field addition | (a + b)v = av + bv |